

Development of a digital habitat suitability analysis for black rhinos

- Max Sterk

Research Project Master of International Nature Conservation

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

LINCOLN UNIVERSITY TE WHARE WĀNAKA O AORAKI

Black rhinoceros (Diceros bicornis)

Figure 1: Black rhino population

Figure 2: Poaching numbers (2010-2020)

- Listed as *critically endangered* by the IUCN (2020)
- 5,500 individuals left throughout Africa
- Intensive hunting and poaching caused an extreme decimation in the last century
- Today: poaching; habitat loss and fragmentation of populations remain the major threats
- Namibia offers the most important ranges and hosts the largest meta-population of black rhinos

Namibia's Black Rhino Custodianship Programme

- Due to the growing human population and the increase of settlements in rural areas, usable habitat for black rhinos becomes less and remains in Non-Governmental Organization and private areas
- To establish viable subpopulations in these areas, Namibia's conservation authorities initiated a breeding programme in 1993
 - Decentralisation of the main population from the Etosha National Park
 - **Relocation** to private farmland and communal conservancies

Figure 3: Namibia's black rhino translocation

Namibia's Black Rhino Custodianship Programme

Advantages:

- Many viable populations throughout the country (above-average growth rates)
- Locals become rhino custodians and provide basic care
- Lower risk of extinction from potential threats
- Potential use as a resource for income (safari tourism)
- Increased acceptance within local communities

Problems:

- Many farmers and wildlife sanctuaries do not have enough funds to continuously monitor and protect them against poaching
- Due to growing black rhino populations on the farms, most areas are reaching their carrying capacity
- Area assessment for introduction is a complicated procedure and translocations are very expensive

Urgent need to find new suitable areas in order to enable the continuation of this successful breeding programme

Addressing the problem

drones

satellites

wildlife cameras

Ecosystem Observation

Satellite, drone, and wildlife camera data enable a continuous and holistic surveillance of an ecosystem

Development of a software that helps to identify new suitable areas for black rhinos

Ecosystem Analysis

Automated analysis of ecosystem data to calculate a detailed, digital ecosystem database

Softwareplatform

Processing of the collected data for the development of nature conservation strategies and work planning

Automated Ecosystem Quantification Lifecycle

Step 1: Aerial imaging

Drones and satellites:

- Data capture on landscape level
- Mapping of whole ecosystems
- Accessibility to remote terrain
- More cost-efficient and safer than traditional methods such as helicopters, airplanes, vehicles, on foot, etc.
- Assembly of additional hyperspectral and multispectral sensors

Step 2: Training artificial intelligence

- Identification of habitat components such as vegetation, water points, topography, other animal species, human infrastructure, etc.
 - Through georeferenced annotations on aerial images (drawing polygons around individuals trees, bushes, animals, etc.)

Figure 4: Exemplary aerial image of the Kalahari landscape

Step 2: Training artificial intelligence

igure 5: Exemplary annotation

Step 3: Analysis of habitat components

- Wild Intelligence Lab
- Application of different analysis methods to automatically assess local habitat components (trained algorithms)
- Estimation of vegetation densities (distances between individual trees and bushes)
- Estimation of vegetation heterogeneity (species composition)
- Estimation of **plant health** and **biomass** (NDVI)

Step 4: Data intersection

- Integration of black rhino habitat use data from the Kalahari ecosystem
- → Creation of reference-database (Kuzikus Wildlife Reserve)

- Overlapping and allocation of multiple data layers
- → Creation of habitat-use-criteria-catalogue

Black rhino home ranges/ key areas

Vegetation heterogeneity

egetation density

Vegetation types

Drone/satellite imagery

igure 7: Exemplary data intersection

Identifying the decisive habitat components and decoding key factors of black rhino habitat use

Area: 60.0170 m arimeter: 29.7744 n

0

0

Step 5: Translating the catalogue of habitat use criteria into WIL's GIS-based application

Figure 8: Exemplary catalogue of black rhino habitat use criteria and WIL's GIS software

Farm Size

Habitat

Water

Security

Step 6: Expanding to other areas

- Scanning of potential locations for black rhinoceros introduction (farmland/communal areas) using drones and satellites
- Automatised quantification of aerial images

Step 7: Analysing habitat suitability with the software

Catalogue of habitat use criteria:

- Spatial recording and automated delimitation of local conditions
- Analysis and comparison of habitat parameters with those from the reference area (search for similar composition, distance and distribution of different habitat components)
- -> Ranking various sections according to their suitability as a black rhino habitat (suitability score)

Step 7: Analysing habitat suitability with the software

- Can be used as an additional area assessment method for rhino management
- Provides a detailed, spatial prediction on the landscape level
- Indicates to what extent the area is suitable as a new location for the introduction of black rhinos
- Also applicable for the calculation of carrying capacity studies

